

Approved for public release; further dissemination unlimited

Lawrence
Livermore
National
Laboratory

U.S. Department of Energy

Preprint
UCRL-JRNL-201058

Simulation Data as Data
Streams

G. Abdulla, T. Critchlow, W. Arrighi

SIGMOD Record
Volume 33, Number 1

March 2004

DISCLAIMER

This document was prepared as an account of work sponsored by an agency of the United States
Government. Neither the United States Government nor the University of California nor any of their
employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for
the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or
represents that its use would not infringe privately owned rights. Reference herein to any specific
commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, does not
necessarily constitute or imply its endorsement, recommendation, or favoring by the United States
Government or the University of California. The views and opinions of authors expressed herein do not
necessarily state or reflect those of the United States Government or the University of California, and
shall not be used for advertising or product endorsement purposes.

This is a preprint of a paper intended for publication in a journal or proceedings. Since changes may be
made before publication, this preprint is made available with the understanding that it will not be cited
or reproduced without the permission of the author.

Simulation Data as Data Streams
Ghaleb Abdulla, Terence Critchlow, William Arrighi

Lawrence Livermore National Laboratory
abdulla1@llnl.gov, critchlow@llnl.gov, wjarrighi@llnl.gov

Abstract
Computational or scientific simulations are

increasingly being applied to solve a variety of
scientific problems. Domains such as
astrophysics, engineering, chemistry, biology,
and environmental studies are benefiting from
this important capability. Simulations, however,
produce enormous amounts of data that need to
be analyzed and understood. In this overview
paper, we describe scientific simulation data, its
characteristics, and the way scientists generate
and use the data. We then compare and contrast
simulation data to data streams. Finally, we
describe our approach to analyzing simulation
data, present the AQSim (Ad-hoc Queries for
Simulation data) system, and discuss some of the
challenges that result from handling this kind of
data.

1- Introduction
Scientific simulation is used in a variety of

scientific and engineering disciplines. In general,
a simulation performs an experiment
computationally rather than physically. In
scientific fields such as physics, chemistry and
climatology there is substantial interest in the
development and verification of simulations that
accurately model the associated physical
phenomena. In some cases, the phenomena of
interest may not be experimentally controlled. In
other cases, experimentation maybe prohibitively
expensive, dangerous or physically impossible.
These models then play a critical role in
understanding and predicting the behavior of
complex systems or experiments, and in scientific
discovery in general. Examples of simulation
experiments include, but are not limited to:
• Climate simulations which are capable of

predicting both large-scale global and small-
scale local weather patterns.

• Computational biology simulations that
predict the interaction of new drugs with
receptor sites.

• Astrophysical simulations that describe a
phenomena ranging from the formation and

evolution of single stars, to galaxies and
ensembles of galaxies.

• Nuclear weapons simulations that ensure the
safety and efficacy of the nation’s weapons
stockpile without testing.
These examples demonstrate the spatial and

temporal ranges over which scientific simulations
may be applied. Time scales can range from
femtoseconds to decades and distances can range
from microscopic to galactic [1]. Running a
simulation can require thousands of processors
and produce petabytes of data. Such massive
computations have become feasible due to the
current generation of massively parallel
computers and their associated file systems.

This ability to generate complex and vast
amounts of data, however, will overwhelm
current computational infrastructure. Effective
storage and archival algorithms must be devised
to cope with these volumes of data while
ensuring the data is retained for both future
reference and validation of new results.
Querying the simulation results, either while they
are being generated or after they have been
written to the file system, is an enormously
expensive task. Imagine trying to locate a single
piece of information in several hundred data sets
where each data set is on the order of petabytes.

One possible solution is to summarize such
data sets and save a compressed yet
representative summary. Another interesting
approach is to treat the data set as a data stream,
processing the query in real-time as the data is
being generated. While not all queries can be
easily executed against these data streams, those
that can are able to scale to the large data sets
that the simulation produces

In this paper we discuss the challenges of
querying simulation data, our approach to
handling them, and how this approach is similar
to the techniques used by the data streaming
community.

2- Scientific Simulation Data
The nature of scientific simulation data is

strongly dependent on the numerical technique
employed by the simulation. Numerous formats

 1

mailto:abdulla1@llnl.gov
mailto:critchlow@llnl.gov

are used to describe and store simulation data.
One such format developed and widely used by
Lawrence Livermore National Lab is called Silo.
For a complete description of the Silo abstraction,
the reader is advised to look at the web address
http://www.llnl.gov/bdiv/meshtv/manuals.html

Files in the Silo format may be viewed in 3-
D using a viewer called Mesh-TV. For practical
reasons, we have adopted the Silo data format for
our work, although our approach is generally
applicable to any mesh format. The images
shown in this paper were created using meshTV.
For a more detailed description of mesh data see
[2].

Types of Meshes

Scientific simulations are discrete
approximations to problems defined on
continuous media often called a “base space.”
Obviously, it is impossible to compute and store
the values of the variables of interest (e.g. temp,
pressure, velocity) at the infinitely many points
present in any problem.

Instead, the base space is discretized into a
finite number of volumes or “zones.” For 3-D
data sets, each zone is comprised of a set of 2-D
faces, which are themselves made up of an
ordered collection of vertices (or points in 3
dimensions). For example, a base space may be
discretized into cubes each of which is made up
of 6 faces, 12 edges and 8 nodes. The collection
of zones used by the simulation to define the 3-D
space being modeled is typically called a mesh.

Meshes are generally categorized as either
structured or unstructured. Structured meshes are
regularly ordered collections of the same element.
Quadrilateral meshes are a specific example of
structured meshes, in which there are a prescribed
number of hexes or quads in each dimension.
Unstructured meshes by contrast are collections
of arbitrarily shaped zones with complex
connectivity relationships. Such meshes require
an explicit description, usually in terms of the
nodal connectivity of each zone, and are thus
usually much more expensive to represent than
structured meshes.

Types of Variables

Variables are represented as values at any
point in the mesh. The two most common types
of variables are “nodal” and “zonal” variables. In
the case of nodal variables, the values are
associated with each node in the mesh. The
variable value at points between the nodes can be
found by interpolating the nodal values. These

interpolating functions are typically linear
although higher order interpolants are sometimes
used. In the case of zonal variables, the values
are associated with each zone and the variable is
typically constant throughout the zone. In some
cases, variables have complex values, such as
vectors. Figure 1 shows a region of a mesh for an
exploding star. The colors (or various degrees of
shade) in the figure reflect a variable called xdot
(the speed in the x direction). The arrows on the
figure are the velocity vectors

Figure 1: A 3-D plot of an exploding star with
the speed and velocity shown on its surface.

To minimize storage requirements it is
common to store only the fundamental variables
from a simulation. Ancillary results that may be
derived from the fundamental variables are not
explicitly stored to save space. An example of
such a derived variable is the scalar quantity
speed which is easily derived from the velocity
vector shown in Figure 1.

This complex structure of the data causes the
data size to grow rapidly and makes querying and
visualizing the data a challenging task.

3- Data Streams and
Scientific Simulation Data
Data streaming is an area of active research

in the database community. Data streams differ
from conventional stored data in several ways
[7]:
1. The data elements in the stream arrive

online.

 2

2. The system has no control over the order in
which data elements arrive (within and
across data streams).

 Write restart file;
 Visualize();
 Modify parameters_if_needed;
 Restart simulation; 3. Data streams are potentially unbounded in

size. Else
 If (remainder (time / M) == 0)) 4. Once an element from the data stream is

processed, it is discarded or archived and
cannot be retrieved easily.

 Write plot-files;
endif

 endif
While technically finite in size, simulation

data can grow to be arbitrarily large; multi-
gigabyte data sets are considered tiny and multi-
terabyte data sets are common. While most
simulation data sets are archived on tertiary
storage after analysis, some are discarded because
of storage limitations.

}
The simulation writes out restart files every

N cycles (or simulation timestep). The restart
files contain enough detailed information about
the simulation status to allow it to be restarted
from the current time. Plot files are written every
M cycles where M < N. To determine the validity
of their simulations, scientists visualize the
dumped files with a tool such as Mesh-TV. If
they encounter an error, they modify the
simulation code, the input parameters, or both
and rerun the simulation. Given the volumes of
data involved, waiting until the entire simulation
completes to evaluate it is inefficient.
Furthermore, manually examining the images one
by one and this is a lengthy and error prone
process.

Scientists would benefit from being able to
quickly answer some of their queries while data
is being written. For example, queries that test for
tangled meshes or extreme variable values can be
used to determine if the simulation is executing
properly or not. By identifying a problem early,
scientists can abort erroneous runs and restart the
simulation with new initial conditions. This is
important because simulation runs are very
expensive and they take a long time to finish.

There are two ways we can utilize data
streaming algorithms to help scientists:

This example shows that real-time analysis
of simulation data is needed to help the scientists
verify the simulation code. In addition it is
needed after the simulation has been verified in
order to steer the computation by changing the
simulation input parameters. This allows the
scientists terminate an experiment earlier if the
results are deviating from what is expected
because input parameters need to be changed and
not because of error in the code.

1. Preprocessing, summarizing, and
compressing, the data to query or analyze in
the future. To do this effectively requires a
one pass algorithm, similar to those used by
data streams. The requirements for one pass
algorithms is due to the data size.

2. Executing queries on the original data while
it is being generated. These queries will be
executed in near-real-time, and would be
similar in capability to data streams.

 Real-time analysis is very hard and may
require coupling the analysis algorithms with the
simulation computation. However, there are some
success stories for computational steering with
quasi real-time visualization. An example of such
successful application is the Cactus system where
the code was configured to allow remote
visualization and steering [12]. It is difficult to
apply this approach to our environment for
several reasons. First, our data is highly
dimensional. Second, our users are interested in
relations between variables, not only the values
of certain variables. For example, they might
want to see what is happening to variable “P” if
variable “T” is increasing. Finally, the size of the
generated data sets does not allow real-time
visualization.

In the next section we will discuss the details
of using these two approaches

4- Querying Scientific
Simulation Data
Simulation data is highly dependant on the

application, hence, it is hard to come up with one
set of requirements for data processing across
applications.

While developing a new simulation code, the
scientists must verify both the underlying
mathematical model and the implementation. As
a result, they spend a lot of time verifying the
simulation. The algorithm for running the
simulation can be summarized as follows Once the simulation is complete, the

scientists are interested in analyzing the data and
comparing it with experimental results or with
other simulations. This analysis is done on the

While (true)
{ Compute;
 If (remainder (time / N) ==0)

 3

To satisfy these requirements we create an
approximate, multi-resolution synopsis of the
data in a format that maintains the outliers. We
use this approximation to compress the data and
create efficient indexes for query processing.
AQSIM is designed to work off-line after the data
has been generated and it requires the synopsis to
be generated before the data is queried [3,4,5,10].
The implementation has evolved over the last two
years to include a simple statistical model, a
wavelet model, and a clustering model. For more
details the reader is referred to [4,5]. The latest
AQSIM implementation utilizes a bottom-up
agglomeration algorithm that uses the topology of

simulation results (plot and restart files) after they
have been generated. In this mode, the scientists
might be interested in more complex queries,
such as following a certain phenomena or tracing
the values of a variable over the course of time,
or comparing it to experimental results.

Ad-hoc Query Simulation System
(AQSim)
AQSim is an ongoing effort to design and
implement a system to analyze terabyte-sized
scientific simulation data sets (Figure 2). The

Simulation data

the mesh to create the multi-resolution hierarchy.
The algorithm starts by collecting the fine cells in
the grid into a coarser cell. The algorithm is a
two-pass algorithm to guarantee that it will
produce the best topology representation. The
data within the cells are propagated upwards to
the coarser cells using simple statistical
information such as number of points, min, max,
mean, and standard deviation. The coarse cells
use bounding boxes to define their associated
spatial regions. Because the finer resolution cells
will not generally fill this bounding box, each cell
also has an associated percentage filled. After
that the resulting tree can be pruned in order to
save space. The pruned tree supports processing
the queries faster, however, most answers will be
approximate.

main goal of AQSim is to reduce data storage
requirements and access times while permitting
ad-hoc queries using statistical and mathematical
models of the data

Results

Create
synopsis

 Index
files

Index
Searcher Time-constrained

query

Mesh
generator

Figure 2: A diagram of AQSIM data flow.

Users can also limit the time if they are not
willing to wait for an answer. In this case, the
result will obviously be a lower resolution mesh.
A priority is used at query time to decide which
cell should be traversed first. This priority is
based on a combination of a cell’s percentage
filled and how well it answers the specific query
being asked. This priority based traversal of the
multi-resolution tree allows us to generate the
best possible mesh for the given time constraint.
Currently, we are focusing on improving the
efficiency of our out of core algorithms and
parallelizing the implementation.

Using data stream terminology, we are
processing our data in a batch mode. This choice
was made because we cannot control the rate of
the data dumps, we have to save the restart files
under any circumstances, and the time consuming
step of creating the data summary is considered
part of the query. In other words, this fits the
traditional batch processing mode in which
updating the data is faster than query processing.

The design of AQSIM is heavily influenced
by the following three facts
1- The size of the data generated is huge and

scientists are not able to keep it on secondary
storage for a long time.

2- Scientists are willing to accept approximate
answers when returned in a reasonable time,
as long as there are no false negatives.

3- Scientists do not like to sample the data
because sampling cannot capture the outliers
that are important to them.

We are looking into the possibility of
extending the system by adding a direct query
capability that allows querying the data in its

 4

Table 1 lists a set of queries, the time it took
for each query in seconds, and the number of
elements retrieved. These queries were run on a
1.5-GHz Pentium processor Linux workstation
with 512 MB of memory and using a single
processor. The data was accessed over a 1-Gb

Ethernet connection. Table 1 shows that when the
query retrieves more zones, the time increases but
not linearly. This is primarily a result of the query
engine moving from in-core to out-of-core data
structures and the associated disk accesses. To
speed up the queries we are working on creating a
more efficient index format, and parallelizing the
approximate query engine.

original format. Since this would drop the
preprocessing step, computing the answer to the
many queries (including writing the data) will be
relatively fast. In this case we could run the query
quasi real-time on the data. It is important to note,
however, that some queries, such as those
requiring extensive topology information or a
value to be computed globally, cannot be
answered using this configuration. For example
locating zones where the temperature does not
exceed half of the maximum temperature could
not be executed because it requires knowing the
global maximum of a variable.

Query Time Zones
ydot > 0.4 and ydot
< 0.5 and X > 0 and
Y > 0 and Z > 0

48.86 38898

ydot > 0 and X > 0
and Y > 0 and Z > 0

279.43 380035

ydot > 0 and Y > 0
and Z > 0

633.18 738265

Table 1: Query time and selectivity (number of
zones retrieved).

Results

We have also prototyped a parallel
implementation of the direct-query capability.
We ran the same set of queries on MCR (a linux
cluster) distributing the data over 16 processors
(one time step per CPU). The direct-query
prototype took 38 seconds to execute each query.
The time was consistent because the direct-query
does not use a multi-resolution hierarchy, instead
it linearly scans the entire data set for each query.
From the query time perspective, our initial
approach will outperform the direct approach
when the query selectivity is high enough to
require scanning only a small part of the tree.

Figure 3: Query: “ydot > 0.4 and ydot < 0.5
and X > 0 and Y > 0 and Z > 0”.

We have an early prototype of AQSIM that

can be used to query simulation data. We shared
our initial results with some scientists and they
are excited about it. The system will provide
opportunities for understanding the huge amounts
of data that they have been collecting. To enable
data analysis, we use a simple query language
that can support user-defined functions.

By enabling the direct-query capability on
parallel machines, the scientists can devise
queries that allow them to verify the simulation
without examining the individual files or
performing an expensive preprocessing step. On
the other hand, the approximate approach is more
appropriate for highly selective queries (which
we expect to be the typical case), complex
queries such as those requiring topological or
global information, and offline analysis since the
data set size will be much smaller and
manageable.

Figure 3 shows the results obtained from the first
query listed in Table 1 on a 5-GB astrophysics
simulation of a star. This data set contains
approximately 26 million zones spread across 16
time steps. The resulting mesh, shown in Figure
3, has the highest resolution possible since the
query was not time constrained. Although, the
query was performed on the data synopsis, the
resulting mesh is extremely close to the original
one. The query retrieved 38,898 zones in
approximately 48 seconds.

5- Related Work
The database community has been very

active in the area of high-dimensional data and

 5

 6

work on both managing and providing efficient
algorithms to help understand it. The literature
has many papers that describe data streams and
how are they different from the traditional
database approach. [7] is an excellent paper that
summarizes the research in data stream systems.

 [8] discusses the feasibility of building data
stream systems for Online Analytical Processing
(OLAP). To our knowledge, it is the only paper
that discusses data streams applied to scientific
data, and we are not aware of any work that
looked into simulation data from this perspective.

There are several efforts such as [9], to
describe data models to support data generated
from physical experiments. The most relevant
effort is the sheaf data model, which has evolved
from the fiber bundle model that was introduced
by Butler and Pendley in 1989 [11].

6- Conclusions
In this paper, we introduced scientific

simulation data, the way it is generated, and how
it is used. Important similarities exist between
simulation data sets and data streams to the point
where simulation data can be viewed as a special
case of data streams. We used these similarities to
show how are we utilizing data streams concepts
in building AQSIM. We showed initial results
and discussed some of our plans to extend the
system. The initial response from our prospective
users was very promising.

7- Acknowledgements
This work was performed under the auspices

of the U.S. Department of Energy by University
of California Lawrence Livermore National
Laboratory under contract No. W-7405- Eng-48.
The authors would like to thank Celeste
Matarazzo, Tina Eliassi-Rad, Susan Hazlett,
Chuck Baldwin, and Megan Thomas from the
Center for Applied Scientific Computing at the
Lawrence Livermore National Laboratory for
their advice and assistance regarding this
research.

References
[1] Louis, S., The NNSA ASCI Program: Advanced

Simulation and Computing, presented at the
October 9, 2001 THIC Meeting WestCoast
Silverdale Hotel, Silverdale WA 98383-9191

[2] Musick, R., and Critchlow, T. Practical lessons in
supporting large-scale computational science, In
Proceedings of SIGMOD Record 1999, ACM
Press, 28(4): 49-57.

[3] Abdulla, G., Baldwin, C., Critchlow, T.,
Kamimura, R., Lozares, I., Musick, R., Tang,
N.A., Lee, B., and Snapp, R. Approximate ad-hoc
query engine for simulation data, In Proceedings
of JCDL 2001 (Roanoke VA, June 2001), ACM
Press, 255-256.

[4] Baldwin, C., Abdulla, G., and Critchlow, T.
Multi-Resolution Modeling of Large Scale
Scientific Simulation Data, In Proceedings of the
Twelfth International Conference on Information
and Knowledge Management, New Orleans, LA,
November 3-8 2003.

[5] Eliassi-Rad, T., Critchlow, T., and Abdulla, G.,
Statistical modeling of large-scale simulation
data, In Proceedings of ACM SIGKDD 2002
(Edmonton Canada, July 2002), ACM Press, 488-
494.

[6] Lee, B., Critchlow, T., Abdulla, G., Baldwin, C.,
Kamimura, R., Musick, R., Snapp, R., and Tang,
N.A., The framework for approximate queries on
simulation data, International Journal of
Information Sciences, Elsevier Sciences,
forthcoming.

[7] Babcock, B.; Babu, S.; Datar, M.; Motwani, R.;
Widom, J. Models and Issues in Data Stream
Systems, Proceedings of 21st ACM Symposium
on Principles of Database Systems (PODS 2002).

[8] Chen, Y.; Dong, G.; Han, J.; Pei, J.; Wah, B. W;
Wang, J.; Online Analytical Processing Stream
Data: Is It Feasible? 2002 Workshop on Research
Issues in Data Mining and Knowledge Discovery
(DMKD'2002).

[9] Malon, D.; May, E.; Critical Database
Technologies for High Energy Physics, In
Proceedings of the 23rd VLDB Conference
Athens, Greece, 1997.

[10] Eliassi-Rad, T., Critchlow, T., Multivariate
Clustering of Large-Scale Simulation Data, LLNL
Technical Report, UCRL-JC-151860, 2003.

[11] Butler, D. M., Pendley, M. H., A Visualization
Model based on the Mathematics of Fiber
Bundles, Computers in Physiscs,
September/October 1989.

[12] Laszewski, G., Insley, J. A., Foster, I, Bresnahan,
J., Kesselman, C., Su, M., Thiebaux, M., Rivers,
M. L., Wang, S., Tieman, B., McNutly, I., Real-
Time Analysis, Visualization, and Steering of
Microtomography Experiments at Photon
Sources, In Proceedings of Ninth SIAM
Conference on Parallel Processing for Scientific
Computing, (San Antonio, TX, March 1999).

University of California
Lawrence Livermore National Laboratory
Technical Information Department
Livermore, CA 94551

	DISCLAIMER
	Sigmod-Record-2004-03-final.pdf
	Abstract
	Introduction
	Scientific Simulation Data
	Types of Meshes
	Types of Variables

	Data Streams and Scientific Simulation Data
	Querying Scientific Simulation Data
	Ad-hoc Query Simulation System (AQSim)
	Results

	Related Work
	Conclusions
	Acknowledgements
	References

